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Abstract
All local generalized symmetries (including x, t-dependent ones) of the Bakirov
system are found. In particular, it is shown that its only non-Lie-point local
generalized symmetry is the sixth order one found by Bakirov. This result
generalizes a similar result of Beukers, Sanders and Wang on x, t-independent
symmetries and completes the refutation of the popular conjecture stating that
the existence of one non-Lie-point local generalized symmetry for a (1 + 1)-
dimensional system of PDEs implies the existence of infinitely many such
symmetries.

Mathematics Subject Classification: 35A30, 58G35, 35Q58

1. Introduction

The existence of an infinite number of local generalized symmetries for a given system of PDEs
is usually the sign of its linearizability or integrability via the inverse scattering transform (see
e.g. [1, 2] and references therein). For a long time it was believed that the existence of one
noncontact local generalized symmetry implies the existence of an infinite number of such
symmetries for any (1 + 1)-dimensional system of PDEs. By noncontact we mean a symmetry
that is not equivalent to a Lie point or contact symmetry. In particular, Fokas [3] wrote: ‘. . . in
all known cases the existence of one generalized symmetry implies the existence of infinitely
many’.

Although Sanders and Wang [4] have recently proved this conjecture for x, t-independent
symmetries of scalar polynomial (1 + 1)-dimensional evolution equations with a linear leading
term, long before this it was understood that the conjecture in question does not hold for the
case of systems of PDEs.

Bakirov [5] came up with an example of a (1 + 1)-dimensional evolution system (6).
This system was conjectured to have only one x, t-independent noncontact local generalized
symmetry K, given below in (7). Using computer algebra, he has shown that this is true for
symmetries up to order 53 of this system, but in full generality this result remained unproved
for years, and it was proposed as an exercise in Olver’s book [1] to find out whether the system
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in question has noncontact local generalized symmetries other than K. Recently, Beukers
et al [6] have rigorously proved that K is the only x, t-independent noncontact local generalized
symmetry of the Bakirov system. Their result disproves the above-mentioned conjecture for
x, t-independent symmetries.

It is natural to ask what happens to this conjecture if we considerx, t-dependent generalized
symmetries as well. The aim of the present paper is to prove that in this case the conjecture
also fails. To this end we find all (including x, t-dependent ones) local generalized symmetries
of the Bakirov system and show that K is the only noncontact local generalized symmetry of
this system. The main tool we use is the technique of formal symmetries [1,2,7–9], combined
with certain homogeneity-based arguments (cf e.g. [10,11]) and investigation of the structure
of low order symmetries. We also make substantial use of the results of Beukers, Sanders and
Wang [6] on x, t-independent symmetries for the Bakirov system and of Bilge’s [12] result on
the existence of x, t-independent formal symmetry for this system.

This paper is organized as follows. In section 2 we recall some well known definitions and
results concerning the generalized symmetries of evolution equations. In section 3 we present
our main result—the complete description of the set of all local generalized symmetries of
the Bakirov system. Section 4 contains the detailed proof of this result, and in section 5 we
present the discussion.

2. Basic definitions and known results

Given a (1 + 1)-dimensional evolution equation

∂u/∂t = F (x,u,u1, . . . ,un) n � 2 ∂F /∂un �= 0 (1)

for an s-component vector function u, where ul = ∂lu/∂xl , l = 0, 1, 2, . . . , u0 ≡ u, consider
its (local) generalized symmetries [1], i.e., the generalized vector fields G = G ∂/∂u, where
G = G(x, t,u,u1, . . . ,uk), k ∈ N, is such that the evolution equation ∂u/∂τ = G is
compatible with (1). In what follows we shall often identify the symmetry G = G ∂/∂u with
its characteristics G.

For any r-component vector function �H = �H(x, t,u,u1, . . . ,uq) the greatest m such
that ∂ �H/∂um �= 0 is called its order [2,8] and is denoted as m = ord �H . For �H = �H(x, t) we
assume that ord �H = 0. We shall call a function �f of x, t,u,u1, . . . local (cf [7,9]) if it has a
finite order.

Denote by S(k)F the space of local generalized symmetries of (1) that are of order not higher
than k. In addition, let

SF =
∞⋃
j=0

S
(j)

F �F = {H(x, t) | H(x, t) ∈ SF }

SF ,k = S
(k)
F /S

(k−1)
F for k = 1, 2, . . . SF ,0 = S

(0)
F /�F .

Finally, let StF be the set of all time-independent (i.e. stationary) local generalized symmetries
of (1), that is, StF = {G ∈ SF | ∂G/∂t = 0}.

SF is a Lie algebra with respect to the so-called Lie bracket (see e.g. [1, 9])

[H,R] = R∗(H)− H∗(R) = ∇H(R)− ∇R(H)

where for any s-component local vector function Q we have introduced the notation

Q∗ =
ordQ∑
i=0

∂Q

∂ui

Di ∇Q =
∞∑
i=0

Di(Q)
∂

∂ui

.

Here, D = ∂/∂x +
∑∞

i=0 ui+1∂/∂ui is the total derivative with respect to x.
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Recall (see e.g. [1]) that a local s-component vector function G is a symmetry of (1) if
and only if

∂G/∂t = −[F ,G]. (2)

It can be shown [1, 7] that (2) implies

∂G∗/∂t ≡ (∂G/∂t)∗ = ∇G(F∗)− ∇F (G∗) + [F∗,G∗]. (3)

Here, ∇F (G∗) ≡ ∑ordG
j=0 ∇F

(
∂G
∂uj

)
Dj and likewise for ∇G(F∗), [· , ·] stands for the usual

commutator of linear differential operators.
Recall (see e.g. [1,2,7,8] for more information) some facts on the formal series in powers

of D, i.e., the expressions of the form

H =
m∑

j=−∞
hj (x, t,u,u1, . . .)D

j (4)

where hj are p × p matrix-valued local functions; in contrast with the above references we
let the coefficients of the formal series depend explicitly on time t , but this obviously does
not alter the results listed below. Below we shall be interested in the cases when hj are either
scalars or s × s matrices.

The greatest integer k such that hk �= 0 is called the degree of formal series H (4) and is
denoted by deg H. A formal series H = ∑m

j=−∞ hjD
j of degreem is called nondegenerate [8]

if its leading coefficient hm is a nondegenerate matrix.
For any formal series H of degree m �= 0 with scalar coefficients there exists a formal

series H1/m of degree 1 (or −1 for m < 0) such that (H1/m)m = H. The formal series H1/m

is unique up to the multiplication by an mth root of unity [7]. The fractional powers of H are
defined as Hl/m = (H1/m)l for all integers l, and commute; that is, [Hp/m,Hq/m] = 0 for all
integers p and q, see e.g. [1] for details.

If H is a formal series whose coefficients are s × s diagonal matrices, i.e., H =
diag(H1, . . . ,Hs), where Hj are formal series with scalar coefficients, and deg H1 = · · · =
deg Hs = m �= 0, then we shall, following [2,8], define itsmth root as H1/m = diag(H1/m

1 , . . . ,

H
1/m
s ). The fractional powers Hl/m = (H1/m)l obviously commute by virtue of commutativity

of fractional powers of Hi , i = 1, . . . , s.
A formal series R whose coefficients are s × s matrices is called a formal symmetry (of

infinite rank) for (1) if it satisfies the relation (see e.g. [1, 2, 8])

∂R/∂t + ∇F (R)− [F∗,R] = 0. (5)

3. Symmetries of the Bakirov system

The Bakirov system has the form [5]

ut = u4 + v2

vt = 1
5v4.

(6)

Here, uj = ∂ju/∂xj , vj = ∂jv/∂xj . We shall also employ the notation uj = (uj , vj )
T ,

u = u0 = (u, v)T , where superscript ‘T ’ stands for the matrix transposition. To refer to sets
of symmetries of the Bakirov system, we shall use the subscript ‘Bak’ instead of F , i.e., SBak

will denote the Lie algebra of all generalized symmetries of (6), etc. From now on F will
stand for the right-hand side of the Bakirov system, that is, (u4 + v2, v4/5)T .
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The straightforward computation of local generalized symmetries of orders 0, . . . , 6 of
the Bakirov system shows that any of its symmetries of order not higher than six is a linear
combination of the following symmetries:

X = u1 ∂/∂u + v1 ∂/∂v T = (u4 + v2) ∂/∂u + 1
5v4 ∂/∂v

D0 = 2u ∂/∂u + v ∂/∂v D = 4tT + xX + 2v ∂/∂v

Wα = α(x, t) ∂/∂u

K = (u6 + 5
11 (5vv2 + 4v2

1)) ∂/∂u + 1
11v6 ∂/∂v

(7)

where α(x, t) is any sufficiently smooth solution of the equation αt = α4. Note that a highly
reduced system of determining equations for these symmetries was obtained using M Marvan’s
program Jet, version 4.3 for Maple V Release 4.

For ease of reading we have presented in (7) the complete formulae for symmetries and
not just for their characteristics.

Our main result is the following theorem.

Theorem 1. Any local generalized symmetry of the Bakirov system is a linear combination of
the symmetries from list (7).

All local generalized symmetries from (7) except for K are equivalent to Lie point ones,
and thus theorem 1 implies that K is the only noncontact local generalized symmetry of the
Bakirov system.

4. The structure of the symmetries of the Bakirov system

4.1. On time dependence of symmetries

Let G be a local generalized symmetry of order k � 0 for (6). Solving the equations obtained
by equating to zero the coefficients at Dk+4 and Dk+3 in (3), it is easy to show (cf e.g. [1, 9])
that

∂G/∂uk = ck(t) (8)

where ck(t) is a diagonal 2 × 2 matrix-valued function of t .
In what follows we assume without loss of generality that any symmetry G ∈ SBak,k ,

k � 0, vanishes provided the relevant function ck(t) is identically equal to zero.
Let  denote the set of symmetries Wα for all (smooth) solutions α(x, t) of the equation

αt = α4. Considering a symmetry G ∈ SBak of order k and successively solving the
determining equations for ∂G/∂uj with j = k − 1, k − 2, . . . that follow from (3), and
using (8), we readily see that G is linear in uj for j = 0, . . . , k and, what is more, G2 is
independent of uj for all j , whence [G,H] ∈  for any H ∈  . Thus,  is an ideal in the
Lie algebra SBak. Therefore, the quotient space S ′

Bak = SBak/ is a Lie subalgebra in SBak. In
particular, [F ,G] = −∂G/∂t ∈ S ′

Bak and [u1,G] = −∂G/∂x ∈ S ′
Bak for any G ∈ S ′

Bak.
Moreover, successively equating to zero the coefficients at Dk+2,Dk+1,Dk in (3) and

analysing thus obtained equations, it is easy to show that ∂2G/∂uj ∂x = 0 for j = k − 2 and
j = k − 1, and

∂2G

∂uk−3 ∂x
= 1

4
ċk(t)" " = diag (1, 5). (9)

Lemma 1. All symmetries from the space S ′
Bak are polynomial in time.

Proof. For the symmetries of orders 0, . . . , 6 this is immediate from (7). Now assume our
result to be already proved for the symmetries of order lower than k and consider a symmetry
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G ∈ S ′
Bak,k ≡ S ′

Bak ∩SBak,k , k � 7. Obviously, G̃ = ∂rG/∂xr ∈ S ′
Bak. Successively using (9),

we see that ordG̃ � k − 3r and

∂G̃

∂uk−3r
= ∂rck(t)

∂tr
("/4)r . (10)

In particular, for r = [k/3] we have ordG̃ � 2. It is clear from (7) that all symmetries
from S

(2)
Bak ∩S ′

Bak are time independent. Hence, by virtue of (10) the function ck(t) = ∂G/∂uk

satisfies the equation ∂qck(t)/∂tq = 0 with q = [k/3] + 1. Therefore, the order of symmetry
∂qG/∂tq ∈ S ′

Bak is not higher than k − 1, and by an inductive hypothesis this symmetry is a
polynomial in t , whence it is immediate that so is G itself, and the result follows. �

The Bakirov system is invariant under the scaling symmetry D ≡ D∂/∂u. Hence, if a
symmetry Q = Q∂/∂u contains the terms of weight γ (with respect to the weighting induced
by D, cf [6]), there obviously exists a homogeneous symmetry Q̃ = Q̃∂/∂u of the same
weight γ . We shall write this as wt(Q̃) = γ . Note that we have [D, Q̃] = γ Q̃.

Next, let G ∈ S ′
Bak,k , k � 1, be a polynomial in t of degree m; that is, G =∑m

j=0 t
jgj (x,u, . . . ,uk), gm �= 0. It is clear that ∂G/∂uk = ck(t) is also a polynomial

in t of degree m′ � m, i.e., ck(t) = ∑m′
j=0 t

j ck,j , where ck,m′ �= 0.

Consider G̃ = ∂m
′
G/∂tm

′ ∈ S
(k)

Bak ∩ S ′
Bak. Since ∂G̃/∂uk is a nonzero constant matrix, it

is immediate that G̃ = G̃∂/∂u contains the terms of the weight k. In turn, this implies that
there exists a time-independent symmetry P ∈ S ′

Bak of order k such that P = P ∂/∂u is of
weight k. Indeed, let P̃ = P̃ ∂/∂u denote the homogeneous component of G̃ of weight k (i.e.
the set of all terms of weight k in G̃), and let P be the projection of P̃ on S ′

Bak. We readily
see that P = P ∂/∂u is also homogeneous of weight k, because D ∈ S ′

Bak. Obviously, P

has order k and its leading term ∂P /∂uk is a constant matrix. As P is a symmetry of the
Bakirov system, ∂P /∂t = −[F ,P ] ∈ S ′

Bak, and the symmetry ∂P/∂t = (∂P /∂t)∂/∂u is
homogeneous of weight k + 4. It is straightforward to verify that ord∂P /∂t � k−1. Hence, if
S ′

Bak contains no homogeneous symmetries Q such that wt(Q∂/∂u) = k+4 and ordQ � k−1,
then ∂P /∂t = 0, i.e. P is time independent.

However, the existence of the scaling symmetry D for the Bakirov system readily implies
the existence of a basis in S ′

Bak made of homogeneous symmetries. As all symmetries in S ′
Bak

are polynomial in t by virtue of the above lemma, so are their leading terms, and thus for any
homogeneous symmetry B = B∂/∂u, B ∈ S ′

Bak, b ≡ ordB � 0, we have ∂B/∂ub = t rcb
for some r � 0, where cb is a constant 2 × 2 diagonal matrix. This observation along with the
homogeneity of B ≡ B∂/∂u readily implies that wt(B) = b − 4r � b. Hence, for k � 1 the
set S ′

Bak indeed does not contain homogeneous symmetries Q such that wt(Q∂/∂u) = k + 4
and ordQ � k − 1, so ∂P /∂t = 0, and the result follows.

Summing up the above arguments, we conclude that the necessary condition for the
existence of a polynomial-in-time symmetry G ∈ S ′

Bak of order k � 1 is the existence of a time-
independent symmetry of the same order from S ′

Bak. Moreover, by lemma 1 all symmetries
from S ′

Bak are polynomial in t . Hence, the absence of time-independent local generalized
symmetries of order higher than p for some p � 1 for the Bakirov system immediately
implies the absence of any time-dependent local generalized symmetries of order higher than
p.

The above reasoning can be restricted to x-independent symmetries. Hence, the absence
of t, x-independent symmetries of order higher than six for the Bakirov system, proved
by Beukers, Sanders and Wang [6], implies that this system has no time-dependent local
generalized symmetries of order higher than six that are independent of x.
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4.2. The structure of time-independent symmetries

By proposition 3.1 from [8] there exists a unique formal series T = E +
∑−1

j=−∞&jD
j such

that all coefficients of the formal series V = TF∗T−1 +Dt(T)T
−1 are diagonal 2×2 matrices.

Here, &j are x, t-independent 2 × 2 matrix-valued local functions with zero diagonal entries,
and E is 2 × 2 unit matrix.

Consider the formal series P = TG∗T−1 for G ∈ StBak. Since ∂G/∂t = 0, we readily
obtain from (3) that [∇F − V,P] = T∇G(F∗)T−1. It is easy to see that for the Bakirov system
we have deg ∇G(F∗) = deg T∇G(F∗)T−1 � 0, and hence deg [∇F − V,P] � 0.

As was shown by Bilge [12], the Bakirov system has a nondegenerate formal symmetry L
of degree 2 and of infinite rank with x, t-independent coefficients. Since L by definition
satisfies the equation [∇F − F∗,L] = 0, L′ = TLT−1 satisfies

[∇F − V,L′] = 0 and, by
virtue of the results of [8], the coefficients of L′ are diagonal 2 × 2 matrices.

Since deg [∇F − V,P] � 0, in analogy with lemma 9 from [9] we can represent P in the
form P = ∑k

j=0 αj (L
′)j/2 + B, where αj are constant diagonal 2 × 2 matrices and B is some

formal series with time-independent coefficients, deg B < 0. Hence

G∗ = T−1

( k∑
j=0

αj (L
′)j/2 + B

)
T.

We have ∂T/∂x = 0 and ∂L′/∂x = 0. Therefore, ∂G∗/∂x = T−1∂B/∂xT. But it is clear
that provided ∂G∗/∂x �= 0 we have deg ∂G∗/∂x � 0, while deg T−1∂B/∂xT < 0. This
contradiction readily implies that ∂G∗/∂x = 0.

Thus, any symmetry G ∈ StBak, k ≡ ordG � 0, can be represented in the form

G = G0(u, . . . ,uk) + Y (x). (11)

It is obvious that ∂Y /∂x = ∂G/∂x ∈ StBak. Hence, by (7) the components of Y have
the form

Y1(x) =
4∑

j=1

cj
xj

j !
Y2(x) = 0

where cj are some constants. We omit the integration constants in Yi , because they can always
be included in G0.

Let us prove that c4 = 0 for any G ∈ StBak. Since (xj , 0)T for j = 0, 1, 2, 3 belong
to StBak, we only have to show that the Bakirov system has no time-independent symmetries
of the form G = G0(u, . . . ,uk) + Y (x) with Y (x) = (cx4/4!, 0)T , c = const, c �= 0. By
definition any such symmetry satisfies the equation [F ,G] = 0, which is equivalent to the
following one:

[F ,G0] = −4(c, 0)T ≡ −H. (12)

We have H ∈ StBak, so (12) implies the existence of time-dependent (but x-independent)
symmetry G0 + tH of the Bakirov system (6).

However, it is clear from the above that (6) has no polynomial-in-time and x-independent
local generalized symmetries of order higher than six. Hence, as G0 + tH is x-independent
and linear in time t by construction, we have ordG0 � ord(G0 + tH) � 6. But it is immediate
from (7) that the Bakirov system has no local generalized symmetries of the form G0 + tH
with ∂G0/∂x = 0 and H �= 0 of orders 0, . . . , 6, so it has no such symmetries (of any order)
at all, and the result follows.

Thus, we have proved the following lemma.

Lemma 2. Any symmetry G ∈ StBak is a linear combination of x, t-independent symmetries
and of the symmetries Bj = (xj , 0)T , j = 1, 2, 3.
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Lemma 2, in combination with the result of Beukers et al [6] on the absence of
x, t-independent generalized symmetries of order higher than six for the Bakirov system,
immediately implies that this system has no time-independent local generalized symmetries
of order higher than six, including x-dependent ones.

In turn, by virtue of the results of the previous section this implies that the Bakirov system
has no polynomial-in-time local generalized symmetries of order higher than six. Finally, by
lemma 1 all symmetries of this system from the space S ′

Bak are exhausted by polynomials in
time t , and hence the Bakirov system has no local generalized symmetries of order higher than
six at all. On the other hand, all its local generalized symmetries up to sixth order can be found
by straightforward computation and are listed in (7). Thus, any local generalized symmetry
of the Bakirov system is a linear combination of symmetries from the set (7), and theorem 1
is proved.

5. Conclusions and discussion

We have shown above that all local generalized symmetries of the Bakirov system (6) are
exhausted by those from (7). In particular, K from (7) turned out to be the only noncontact local
generalized symmetry of this system. Our result generalizes a similar statement of Beukers,
Sanders and Wang [6] concerning x, t-independent symmetries, and gives the final negative
answer to the question of, posed by Olver in [1], whether this system has local generalized
symmetries other than K that are not equivalent to Lie point or contact symmetries. What is
more, our result completes the refutation of the conjecture stating that if a (1 + 1)-dimensional
system of PDEs has one generalized symmetry that is not equivalent to a Lie point or contact
one, then it has infinitely many such symmetries, see the introduction for details.

As a final remark, let us mention that Fokas [13] suggested a modified version of the
above-mentioned conjecture for evolution systems stating that if a (1 + 1)-dimensional s-
component evolution system has s time-independent non-Lie-point generalized symmetries,
then it has infinitely many such symmetries. Sanders and van der Kamp [14] have disproved
this conjecture for x-independent symmetries by exhibiting a wide class of two-component
evolution systems with only two x, t-independent non-Lie-point local generalized symmetries.
The methods of the present paper are applicable to the systems from [14] and enable one to
find all their local generalized symmetries, including x, t-dependent ones. In particular, it is
possible to complete the refutation of the modified Fokas conjecture for x-dependent (and for
x, t-dependent) symmetries by proving that the systems from [14] have only a finite number
of non-Lie-point local generalized symmetries, including x, t-dependent ones. We intend to
present the detailed proof of this result elsewhere.
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